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This study provides a demonstration in the rat of a clear genetic
difference in the propensity for addiction-related behaviors fol-
lowing prolonged cocaine self-administration. It relies on the use
of selectively bred high-responder (bHR) and low-responder (bLR)
rat lines that differ in several characteristics associated with “tem-
perament,” including novelty-induced locomotion and impulsivity.
We show that bHR rats exhibit behaviors reminiscent of human
addiction, including persistent cocaine-seeking and increased re-
instatement of cocaine seeking. To uncover potential underlying
mechanisms of this differential vulnerability, we focused on the
core of the nucleus accumbens and examined expression and epi-
genetic regulation of two transcripts previously implicated in bHR/
bLR differences: fibroblast growth factor (FGF2) and the dopamine
D2 receptor (D2). Relative to bHRs, bLRs had lower FGF2 mRNA
levels and increased association of a repressive mark on histones
(H3K9me3) at the FGF2 promoter. These differences were apparent
under basal conditions and persisted even following prolonged co-
caine self-administration. In contrast, bHRs had lower D2 mRNA un-
der basal conditions, with greater association of H3K9me3 at the D2
promoter and these differences were no longer apparent following
prolonged cocaine self-administration. Correlational analyses indi-
cate that the association of H3K9me3 at D2 may be a critical sub-
strate underlying the propensity to relapse. These findings suggest
that low D2 mRNA levels in the nucleus accumbens core, likely me-
diated via epigenetic modifications, may render individuals more
susceptible to cocaine addiction. In contrast, low FGF2 levels, which
appear immutable even following prolonged cocaine exposure,
may serve as a protective factor.
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Approximately 16% of adults in the United States report drug
use within the past year (1). However, not everyone who

experiments with drugs becomes an addict, as an estimated 8.5%
of the population, or 25 million Americans, meet Diagnostic and
Statistical Manual of Mental Disorders IV (2) criteria for substance
abuse and dependence (1). Environmental and societal factors
play a role in addiction liability (e.g., refs. 3–5), and there is ample
evidence demonstrating a role for genetic factors (e.g., refs. 6–10).
However, studying the interplay among these factors is difficult in
human studies because of the inability to control for environ-
mental factors and the challenge of parsing causes from conse-
quences. Preclinical animal models are therefore essential for
defining the complex interactions between genes and environ-
ment, and uncovering the neural mechanisms that might render
an individual more susceptible to drug addiction.
The first animal model characterizing individual differences in

the propensity to take drugs of abuse was introduced over two
decades ago by Piazza et al. (11), who showed that, like humans,
only some rats readily self-administer such drugs. Furthermore, this
propensity to take drugs could be predicted by a behavioral trait,
referred to as “sensation-seeking” (11). That is, high-responder

(HR) rats, or those that exhibited increased locomotor activity
when placed in a novel environment, were more likely to self-
administer drugs of abuse [i.e., amphetamine, cocaine, morphine
and ethanol (11–14)] relative to low-responder rats (LR), or those
with low levels of activity in a novel environment. Subsequent
studies showed that these rats differ in their stress response, with
HRs exhibiting increased and prolonged corticosterone response
to mild stress (15) and greater stress-induced elevations of dopa-
mine activity (16) relative to LRs. Thus, these rats presented a
model that captured both behavioral and neurobiological features
associated with drug-taking behavior.
To better understand the genetic and neural underpinnings

that might enhance the propensity to take and seek drugs, we
started a colony of selectively bred HR (bHR) and LR (bLR) rat
lines (17) that would provide an a priori way of predicting which
rats were destined to become high- vs. low-responders. We could
then exploit these selectively bred lines to examine the ante-
cedent variables that determine the associated behavioral traits
(18). Consistently, for over 40 generations, bHRs and bLRs have
exhibited the key features of the outbred HR/LR rats, but there
are additional characteristics that differ between the lines. In
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particular, bHR rats exhibit a constellation of traits relevant to
addiction (18–20) that are not necessarily apparent in outbred
HR rats (e.g., refs. 21–23). Relative to bLRs, bHRs are more
impulsive (19), more aggressive (20), and more likely to sign-
track to food- and drug-associated cues (19). Although we have
previously shown that these selectively bred rats also differ in
their initial propensity to take cocaine (24), the present study
assesses individual differences in cocaine addiction liability by
exposing bHR and bLR rats to a prolonged self-administration
procedure (Fig. 1), and subsequently assessing some of the di-
agnostic criteria for addiction (25), including the persistence of
drug-seeking behavior and, following abstinence, the propensity
for drug-primed and cue-induced reinstatement, using a rat re-
lapse model (for review, see ref. 26).
The selectively bred lines also allow us to examine the neu-

robiological antecedents and consequences of drug-taking and
drug-seeking behaviors. We focused our analyses on the nucleus
accumbens core (e.g., see Fig. S1), a brain region previously
implicated in addiction-related behaviors (e.g., refs. 27 and 28)
and examined gene expression and the epigenetic modification
of two molecules: fibroblast growth factor (FGF2) and the do-
pamine D2 receptor (D2). These molecules are differentially
expressed in the bHR and bLR rat lines (19, 29) and have been
previously implicated in addiction-related behaviors (e.g., refs.
30–32). We have shown that administration of FGF2 early in
life increases the acquisition of cocaine self-administration in
adulthood (33) and renders bLRs more bHR-like (34), sup-
porting a role for FGF2 as a neuromolecular antecedent of drug-
taking behavior (18, 35). In addition, levels of association of a
mark of transcriptional repression, H3K9me3, at the FGF2
promoter differs between bLR and bHR rats, and this basal
epigenetic pattern is modifiable by early-life FGF2 administra-
tion (36). Furthermore, relative to bLRs, bHRs exhibit lower
overall (i.e., not associated with a specific promoter) levels of
H3K9me3 in the nucleus accumbens and others have reported
cocaine-induced changes in this repressive mark on histones in
the nucleus accumbens (37). In the present study, we further
examined the role H3K9me3, and asked whether basal variations
in the expression and epigenetic regulation of FGF2 or D2—that
likely contribute to individual differences in the initial propensity
to take drugs—are also apparent following prolonged cocaine
self-administration. We also assessed which neurobiological con-
sequences of the drug-taking experience were associated with
addiction-related behaviors in our rat model.

Results
Acquisition of Self-Administration. Self-administration training was
conducted in a manner that allowed us to control for the amount
of drug intake and the number of drug–cue pairings (38). Im-
posing an infusion criterion during training also allowed us to
minimize the potential impact of differences in locomotor activity

on the acquisition of drug-taking behavior. Although more bLRs
than bHRs failed to meet infusion criterion, there were no sig-
nificant differences in the ability to learn to self-administer co-
caine as measured by responses in the active and inactive nose-
ports (Fig. 2A). That is, both phenotypes learned to distinguish
between the nose-ports [Effect of Port, F(1, 78) = 363.2, P <
0.0001] and both increased responding appropriately in the ac-
tive port with increasing infusion criterion [Effect of Infusion
Criterion, F(3, 78) = 21.1, P < 0.0001]. Furthermore, as expected,
pokes into the inactive port decreased or remained stable [Port ×
Infusion Criterion, F(3, 78) = 199.4, P < 0.0001]. Thus, there was a
significant difference in responding at the active vs. inactive port
at infusion criterion 10, 20, and 45 (P < 0.0001).
Despite the fact that all rats were self-administering the same

amount of drug, there were phenotypic differences in the rate at
which they self-administered during the initial phases of training.
There was a significant Effect of Phenotype [F(1, 28) = 13.4, P =
0.001], an Effect of Infusion Criterion [F(3, 38) = 23.3, P <
0.0001], and a significant Phenotype × Infusion Criterion in-
teraction [F(3, 38) = 4.9, P = 0.006] (Fig. 2B) for interinfusion
interval. Relative to bLRs, bHRs took the drug more rapidly
during the initial phases of training, at infusion criteria 5 (P =
0.004) and 10 (P = 0.006). However, after ∼1 wk of training (i.e.,
once the rats moved up to infusion criterion 20), there were no
significant differences in the rate of intake (Fig. 2B). Throughout
the self-administration testing, a bHR was only removed from the
testing chamber once a bLR had completed its session. Thus, the
amount of time in the testing chamber was controlled for, as was
the amount of cocaine intake and number of drug–cue pairings.

Cue Removal. The ability of the discrete cocaine-associated cue
to control drug-taking behavior was assessed after ∼30 self-
administration sessions. When the light in the active port that
typically accompanied cocaine delivery was no longer illumi-
nated (Fig. 3B), bHRs took half the number of cocaine infusions
per minute, whereas bLRs maintained their “baseline” number
of infusions [t(15) = 3.8, P = 0.002] (Fig. 3C). In agreement, the
mean interinfusion interval doubled for bHRs when the cue light
was removed [t(15) = 2.5, P = 0.02] (Fig. 3D). Thus, the discrete
cue light associated with cocaine infusions had greater control
over behavior for bHRs compared with bLRs.

Persistence of Drug-Seeking Behavior. To examine differences in
the persistence of cocaine seeking, we assessed the number of
nose pokes in the active ports during the “drug not available”

Day of Self-Administration Paradigm
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Drug Reinstatement Abstinence
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Fig. 1. Experimental timeline. A subset of bHR and bLR rats from the F24
generation was killed at baseline, around postnatal day (PND) 70. Other rats
from the F24 and F26 generations underwent prolonged cocaine self-
administration consisting of an acquisition phase (∼days 1–20) and a main-
tenance phase (∼days 20–60). Rats from the F24 generation were tested for
the effects of cue removal (∼day 30). Rats from the F26 generation were tested
for drug-induced reinstatement test (∼day 70), followed by 1 mo of abstinence
and then a cue-induced reinstatement test (∼day 100). Brains were collected
∼1 wk later, when rats were ∼170 d of age. The asterisk indicates the last day
of cocaine exposure.
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Fig. 2. Acquisition of self-administration. (A) Mean + SEM number of pokes
in the active (solid lines) and inactive (dashed lines) ports during acquisition.
Both bHRs (n = 23) and bLRs (n = 17) poke more in the active port relative to
the inactive port at infusion criteria 10, 20, and 45 (Effect of Port, P <
0.0001). (B) Mean + SEM of the interinfusion interval (s) at each infusion
criterion. bHRs self-administered cocaine at a faster rate at infusion criteria 5
and 10 (*P < 0.006).
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period (25), when the house light was turned off (Fig. 4B), and
during the “drug available” period, when the house light was
turned on (Fig. 4A). This behavior was examined across 40 self-
administration sessions (after the initial training period of ∼20
sessions). Following prolonged cocaine self-administration, bHRs
showed enhanced cocaine-seeking behavior during the “drug not
available” periods relative to bLRs (Fig. 4E). Importantly, these
bHR/bLR differences were apparent only during the latter, and
not the early, phases of cocaine self-administration. That is, bHRs
begin to seek the drug when it is no longer available only after ∼40
sessions [Phase × Phenotype interaction, F(1, 25) = 4.6, P = 0.04;
bHR vs. bLR at Late phase, P = 0.03] (Fig. 4E). The differences
between phenotypes during the Late phase are driven by the
tendency for bHRs to increase their drug-seeking behavior
during the “drug not available” period over time (Early vs. Late
phase, P = 0.09). There were no significant differences between
phenotypes and no significant interactions for responding during
the “drug available” phase (Fig. 4D). Thus, with prolonged drug
experience, bHRs, but not bLRs, develop a tendency to seek
drug when it is no longer available.

Cocaine Priming-Induced Reinstatement. Following varying periods
of abstinence (39, 40) and extinction, priming injections of cocaine
or re-exposure to a cocaine-paired cue can reinstate drug-seeking
behavior, as measured by responses on the manipulandum (e.g.,
nose-port) that previously resulted in cocaine delivery (41, 42).
This “reinstatement model” is commonly used in rodents to study
relapse (for review, see refs. 26 and 43). One week after the
prolonged cocaine self-administration experience, bHR and bLR
rats were exposed to 11 extinction sessions conducted over 3 d,

and then tested for cocaine priming-induced reinstatement. The
last two extinction sessions occurred on the test day, immediately
preceding the reinstatement test session. Although there were
differences in behavior during extinction (Fig. 5A; Effect of
Phenotype [F(1, 14) = 23.9, P < 0.001], Port [F(1, 294) = 76.5, P <
0.001], Session [F(10, 294) = 19.9, P < 0.001, all interactions, P <
0.05]) these differences could be because of inherent differences
in locomotor activity in the bred lines, rather than the rate of
extinction per se (see SI Results for additional details). In fact, the
significantly greater levels of responding upon initial placement in
the testing chambers makes it difficult to determine if bHRs are
slower to extinguish, as might be expected in an “addiction-prone”
phenotype; or faster, because of the drastic decrease in responding
across subsequent sessions.
Following extinction, cocaine priming-induced reinstatement

was assessed using a within-session ascending dose–response
procedure (similar to refs. 40 and 44). When a mixed linear-
regression model was used to analyze responses in both nose-
ports across cocaine doses (Fig. 5C), there was not a significant
effect of Phenotype, and no significant interactions, but there
was a significant Effect of Port [F(1, 120) = 5.7, P = 0.02]. When
the number of pokes into each port was analyzed separately,
there was a significant effect of Dose for responses in the active
port [F(1, 3) = 7.2, P = 0.001]. For the inactive port, there was a
significant effect of Dose [F(3, 14) = 5.4, P = 0.01] and a significant
Phenotype × Dose interaction [F(3, 14) = 5.7, P = 0.02]. Thus,
additional analyses to account for phenotypic differences in
responding in the inactive port were warranted. We subsequently
analyzed the number of pokes in the active port relative to those in
the inactive port, and these data were square root-transformed to
achieve homogeneity of variance across doses. Using the square
root-transformed ratio of responding in the active/inactive port as
the dependent variable, bHRs exhibited an increase in responding
relative to bLRs (Fig. 5D) [Effect of Phenotype, F(1, 12) = 7.3,
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response in the active port under normal self-administration conditions.
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cocaine infusions when the discrete cue light was removed (bHR vs. bLR;
*P = 0.02). (Illustrations adapted from ref. 79, with permission from AAAS.)
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Fig. 4. Persistence of drug-seeking. (A) “Drug-available” signaled by illu-
mination of the house light, during which pokes into the active port results
in drug delivery accompanied by illumination of a discrete cue light. Pro-
totypical responses during the “drug not available” period for (B) bHRs and
(C) bLRs. Mean + SEM nosepokes into the active port for bHRs (n = 14) and
bLRs (n = 13) from the F24 and F26 generations during (D) “drug-available”
and (E) “drug not available” periods at “Early” (sessions ∼15–20 of main-
tenance phase, ∼40 sessions total) and “Late” (sessions ∼35–40 of mainte-
nance phase, ∼60 sessions total) phases. With prolonged training, bHRs
exhibited enhanced drug-seeking behavior relative to bLRs during the “drug
not available” period (Effect of Phenotype at Late phase, *P = 0.03). (Illus-
trations adapted from ref. 79, with permission from AAAS.)
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P = 0.02], with an overall Effect of Dose [F(2, 35) = 4.3, P = 0.02],
but no significant Phenotype × Dose interaction. Thus, both
phenotypes altered responding as a function of dose, but the
difference between phenotypes was similar across doses. Im-
portantly, when an alternative statistical approach was used in
which the levels of responding in the inactive port were consid-
ered as a covariate, similar results emerged (Fig. S2). Taken
together, when these data are analyzed in a manner that accounts
for differences in responding at the inactive port, which may be
reflective of inherent or cocaine-induced differences in activity
levels (19), we find that bHRs appear to be more susceptible to
drug-induced reinstatement relative to bLRs.

Cue-Induced Reinstatement. After ∼1 mo of abstinence following
the cocaine priming-induced reinstatement test, rats were ex-
posed to 13 extinction sessions conducted over the course of 4 d
(Fig. 5C). The last three extinction sessions occurred on the test
day, immediately preceding the reinstatement test. As above,
there were significant differences in behavior during extinction
(SI Results), but it is difficult to determine if these differences
can be attributed to the rate of extinction per se, or inherent
differences in activity.
During the cue-induced reinstatement test, responses in the

active nose-port resulted in the presentation of the discrete cue
light previously associated with cocaine delivery (45). Under
these conditions, bHRs respond much more vigorously for pre-
sentation of the cue light relative to bLRs: Effect of Phenotype
[F(1, 28) = 9.4, P = 0.005]; Effect of Port [F(1, 28) = 18.3, P =
0.0002]; Phenotype × Port interaction, F(1, 28) = 6.4, P = 0.017]
(Fig. 5D). Both phenotypes distinguish between the active and in-
active ports (P < 0.01 for both); yet, there is a significant difference

between bHRs and bLRs only for responses at the active port
(P = 0.01). These data demonstrate that bHRs are more suscep-
tible than bLRs to cue-induced reinstatement, and provide further
evidence that the discrete cocaine-associated cue-light attains
greater motivational value for bHRs.

Principal Components Analysis. To determine whether the behav-
ioral outcomes described above could be reduced to fewer di-
mensions that might account for individual differences in addiction
liability, principal components analysis was performed. When bHRs
and bLRs are combined into a single population, the behavioral
variables can be reduced to two factors that, together, account
for 70% of the variance (Fig. 6 and Table 1). Factor 1, which ac-
counts for 48% of the overall variance, has strong loadings (>0.7)
from four behavioral variables: locomotor response to novelty, ac-
quisition, persistence of drug-seeking behavior, and drug-induced
reinstatement. Thus, in these bred lines this constellation of traits
appear to be related and, when exhibited together, may contribute
to addiction liability. Factor 2, which is orthogonal to Factor 1 and
accounts for 22% of the total variance, is comprised largely of a
single variable: cue-induced reinstatement (loading = 0.89). Cue-
induced reinstatement may therefore represent a distinct behavioral
variable that captures a separate dimension of addiction liability.
When principal components analysis was conducted for each of the
phenotypes separately, a different picture emerged, with some
constructs similarly correlated within each phenotype, and others,
such as the persistence of drug-seeking behavior, phenotype-
dependent (Table S1).

Addiction Score: Selection of Brain Tissue. To assess the neurobio-
logical consequences of “addiction-like” behavior, brains were
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analyzed from six bLR rats and six bHR rats that were identified
as the least or most “addiction-prone,” respectively, based on
a calculated Addiction Score (SI Materials and Methods and
SI Results).

FGF2 in the Nucleus Accumbens Core. Consistent with our previous
findings (34, 35), FGF2 mRNA levels in the core of the nucleus
accumbens were higher in bHRs relative to bLRs under basal
conditions [t(9) = 5.77, P = 0.0003], and these differences were
also apparent following prolonged cocaine self-administration
[t(9) = 2.42, P = 0.038] (Fig. 7B). In agreement, relative to bLRs,
bHRs had lower levels of association of the repressive mark
H3K9me3 at the FGF2 promoter under basal conditions [t(9) =
15.63, P < 0.0001] and following prolonged cocaine exposure [t(9) =
9.97, P < 0.0001] (Fig. 7D). Neither FGF2 mRNA levels nor the
association of H3K9me3 at FGF2 correlated significantly with any
of the “addiction-like” behaviors. Thus, the differences in FGF2
gene expression and its association with H3K9me3 represent a
stable trait of the bHR and bLR phenotypes, which does not ap-
pear to account for the differences in addictive behavior per se.
Nonetheless, in view of the fact that early life FGF2 administra-
tion promotes self-administration (33), we suggest that the low
levels of FGF2 expression serve as a protective factor, enhancing
resiliency to cocaine addiction.

Dopamine D2 Receptor in the Nucleus Accumbens Core. In agree-
ment with our previous findings (19, 35), dopamine D2 receptor
mRNA in the core of the nucleus accumbens was lower in bHRs
relative to bLRs under basal conditions [t(9) = 3.55, P = 0.006]
(Fig. 7F). Following prolonged cocaine self-administration, how-
ever, these significant differences were no longer observed (Fig.
7F). Association of H3K9me3 at the D2 promoter was consistent
with the gene-expression findings, showing greater association of
this repressive mark in bHRs relative to bLRs under basal con-
ditions [t(9) = 10.31, P < 0.0001], and no significant differences

following cocaine self-administration (Fig. 7H). Interestingly,
there was a significant positive correlation between the binding
ratio of H3K9me3 at D2 and the propensity for cue-induced
reinstatement, as measured by the ratio of pokes in the active vs.
inactive ports. This correlation is significant when the pheno-
types are combined into a single population (R2 = 0.65, P = 0.001)
(Fig. 8), when they are analyzed separately in bHRs (R2 = 0.79,
P = 0.02) and bLRs (R2 = 0.70, P = 0.04) (Fig. S3), and when the
two apparent bHR outliers are removed from the combined
dataset (R2 = 0.44, P = 0.04). These analyses suggest that the
greater the coupling of the histone H3K9me3 at the D2 pro-
moter, the more likely one is to exhibit cue-induced cocaine-
seeking behavior after extinction.

Discussion
The data presented here demonstrate the role of genetics in
addictive behavior, as evidenced by the fact that rats selectively
bred based on locomotor response to a novel environment differ
on a number of behaviors reminiscent of human addiction.
Relative to bLRs, bHR rats are more likely to seek cocaine when
it is no longer available and more susceptible to control by co-
caine itself and cocaine-associated cues. That is, following pro-
longed cocaine self-administration, bHR rats exhibit: (i) attenuated
drug-taking behavior when the discrete drug-associated cue-light is
removed; (ii) increased drug-seeking behavior when drug delivery
is not available; and (iii) increased propensity for reinstatement
of drug-seeking behavior.
The selective breeding of these rat lines, in conjunction with

the fact that we controlled for the amount of cocaine intake
throughout the self-administration period, provide a unique oppor-
tunity to examine the neurobiological antecedents and consequences
of addiction liability and prolonged cocaine self-administration.
We extended previous findings (36), showing that, relative to
bHRs, bLRs have lower levels of FGF2 mRNA and greater
levels of association of the H3K9me3 at the FGF2 promoter,
specifically in the nucleus accumbens core, and these differences
persist following prolonged cocaine exposure. Also in agreement
with previous findings (19, 35), we show that, relative to bLRs,
bHRs have lower levels of D2 mRNA in the nucleus accumbens
core under basal conditions. Novel to the present study, we
demonstrate that, relative to bLRs, bHRs showed greater levels
of association of H3K9me3 at the D2 promoter in the nucleus
accumbens core, and these phenotypic differences in gene ex-
pression and epigenetic regulation of D2 were no longer ob-
served following prolonged cocaine self-administration. Perhaps
most interestingly, however, we found that the association of
H3K9me3 at the D2 promoter is positively correlated with cue-
induced drug-seeking or the propensity to relapse following 1 mo
of abstinence. These findings suggest that cocaine addiction li-
ability may, in part, be driven by epigenetic modifications that
result in low levels of the dopamine D2 receptor in the nucleus
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Fig. 6. Principal components analysis of the relationship between: loco-
motor response to novelty (orange), acquisition of cocaine self-administra-
tion (pink), persistence of drug-seeking behavior (purple), cocaine-priming
induced reinstatement (brown), and cue-induced reinstatement (aqua). Two
factors were revealed that, together, explained 70% of the variance in be-
havior. Four of the behavioral variables load heavily (>0.7) onto Factor 1,
which accounts for 48% of the total variance. Factor 2, which accounts for
22% of the variance, is comprised largely of cue-induced reinstatement
(loading = 0.89) (Table 1).

Table 1. Principal components analysis, behavioral variables

Behavioral variables Factor 1 Factor 2

Locomotor response to novelty 0.79 0.42
Acquisition 0.80 0.03
Persistence of drug-seeking 0.72 0.21
Drug-induced reinstatement 0.73 −0.43
Cue-induced reinstatement 0.12 0.89

Eigenvalue 2.41 1.12
Percent of variance (%) 48.15 22.45

Factor loadings from the rotated component matrix for the combined
population of bHRs and bLRs. Loadings >±0.7 are shown in bold and plotted
in Fig. 7. Seventy percent of the total variance in behavior is accounted for
by the two factors.
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accumbens core. In contrast, low FGF2 levels in the nucleus
accumbens core may serve as a protective factor, decreasing the
likelihood that an individual will “transition” to cocaine addiction.

Individual Differences in Cocaine Addiction Liability. Over the years,
preclinical studies have shifted the focus from the initiation of
drug-taking behavior to compulsive drug use (25, 46–49). One
prominent example is a study demonstrating that the diagnostic
criteria for addiction could be modeled in rats (25). With the
emergence of this animal model of “addiction,” it was reported
that locomotor response to novelty—or “sensation-seeking” as
measured in the rat—is not associated with addiction liability per
se (21, 25, 50), but does remain a good predictor of the initial
propensity to take drugs (22, 51). Although the design of the
present study did not permit phenotypic differences to emerge in
the acquisition of drug-taking behavior as it is typically assessed
(i.e. in number of infusions), we did find that bHRs initially self-
administered cocaine at a faster rate than bLRs, and more bLRs
than bHRs failed to meet infusion criteria early in training.
These results support the notion that locomotor response to novelty
is associated with the initial propensity to take psychostimulant
drugs (11).
Although willingness to experiment with illicit drugs is a critical

element contributing to vulnerability to substance abuse (e.g., ref.
50), elucidating the factors contributing to the conversion from
initial drug-taking behavior to addiction is of great value for
potential therapeutic interventions. To assess the “transition” to
cocaine addiction, we examined the persistence of cocaine-
seeking behavior, or the inability to refrain from drug-seeking. In
support of previous studies (25, 52), we found that only after
prolonged self-administration experience did rats begin to exhibit

addiction-like behaviors: seeking cocaine when it was not avail-
able. However, only bHRs showed evidence for this “switch” to
persistent cocaine use. Thus, although the behavior of bLRs was
relatively stable throughout the maintenance phase, with pro-
longed experience bHRs showed an enhanced tendency to in-
crease drug-seeking behavior.
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Because relapse is one of the biggest problems in the treatment
of addiction (53), and most often triggered by environmental cues
that have previously been associated with the drug-taking experi-
ence (54–56), we examined the ability of the drug-associated cue
to control behavior. Even during relatively early phases of self-
administration training, the drug-associated cue acquired the
ability to control cocaine-taking behavior of bHRs, but not bLRs
(similar to refs. 38 and 57). bHRs were also more susceptible
to cue-induced reinstatement after 1 mo of forced abstinence.
During the cue-induced reinstatement test, bHRs responded
∼four times more than bLRs for presentation of the discrete cue
light in the absence of cocaine reward. These findings are in
agreement with those showing that bHRs have a greater pro-
pensity to attribute incentive salience to drug-associated cues
(19). Taken together, these data suggest that the ability of the
discrete drug-associated cue to control behavior contributes, at
least in part, to the addictive behaviors exhibited by bHRs.
The findings reported here are in contrast to those in outbred

rats, for which there is no association between addiction liability
and locomotor response to novelty (21, 22, 25, 50). It is impor-
tant to reiterate, however, that the bred lines exhibit differences
in other traits that have been associated with addiction liability,
including impulsivity (19), and these differences are not neces-
sarily apparent in outbred LR/HR rats (22, 23; see also ref. 18).
Furthermore, the principal components analysis conducted here
revealed a relationship between locomotor response to novelty,
acquisition of drug-taking behavior, the persistence of drug-
seeking behavior, and drug-induced reinstatement, all of which
loaded onto a single factor accounting for close to 50% of the
variance in behavior. Thus, at least in these bred lines, this con-
stellation of traits, when expressed together, may contribute to
addiction liability.

Neurobiological Antecedents and Consequences of Cocaine Addiction
Liability. To examine neurobiological antecedents that might
contribute to individual differences in the initial propensity to
take drugs, we examined brains from a subset of bLR and bHR
rats that were killed under basal conditions at ∼70 d old, the
same time that selectively bred counterparts began self-admin-
istration. Because the consequences of the prolonged cocaine
exposure were assessed in the brains of rats that were ∼170 d old,
we cannot completely rule out the possibility that aging might
have contributed to phenotypic differences that were apparent
at the latter time point and not under basal conditions. How-
ever, the pattern of differences we found does not support this
explanation. Furthermore, the aim of the study was not to
compare across time points, but to instead examine what pheno-
typic differences exist before and then following the cocaine-
taking experience.

The role of FGF2 in cocaine addiction liability. Basic fibroblast growth
factor (bFGF or FGF2) is a neurotrophic factor that is necessary
for the survival, growth and differentiation of neurons (58, 59).
Several studies have implicated FGF2 in psychomotor sensiti-
zation and drug-induced neuronal plasticity (60–64); and our
previous findings suggest that FGF2 is a neuromolecular ante-
cedent of drug-taking behavior (18). That is, early-life FGF2
administration increases the acquisition of cocaine self-admin-
istration (33) and renders bLRs more bHR-like, increasing their
response to repeated cocaine exposure (35). Furthermore, we
recently found that the long-term effects of early life FGF2
treatment in the bred lines might be mediated by H3K9me3 (36).
In agreement, the present findings suggest that low levels of
FGF2 in the nucleus accumbens core, accompanied by greater
association of H3K9me3 at the FGF2 promoter, plays a pro-
tective role, preventing the transition from initial cocaine use to
addiction. Indeed, this was the neuromolecular profile of bLRs,
both before and after prolonged cocaine exposure.

The role of the dopamine D2 receptor in cocaine addiction liability. The
dopamine D2 receptor has been heavily implicated in addiction
and related disorders (65–67). Specifically, low availability of
striatal D2 receptors has been reported in human cocaine abusers
(68–70) and associated with increased rates of cocaine self-
administration in nonhuman primates (71, 72). Although these
studies report levels of D2 availability as a consequence of cocaine
exposure, Dalley et al. found lower levels of D2/D3 receptor
availability in impulsive rodents that were never exposed to co-
caine, but known to have an increased propensity for cocaine self-
administration (73), suggesting that low levels of D2 availability
may also be an antecedent of drug-taking behavior. In support,
here we show that bHRs have lower baseline levels of D2 mRNA
relative to bLRs, with accompanying differences in the association
of H3K9me3 at the D2 promoter. These differences are consistent
with our previous findings showing that bHRs and bLRs differ in
their baseline dopaminergic profile (19). Interestingly, however,
the phenotypic differences in D2 mRNA and the association of
H3K9me3 were no longer apparent following prolonged cocaine
self-administration. Although these findings may seem incon-
gruent with reports of low D2 receptor availability observed in
human cocaine addicts during or after cocaine exposure (68, 69),
the relationship between mRNA expression levels and the index
of D2 receptor availability used in imaging studies is unknown.
Given the magnitude of the phenotypic differences in the as-

sociation of H3K9me3 at D2 under basal conditions, it is sur-
prising that there are no observed differences following prolonged
cocaine self-administration. On the other hand, although our
study was not designed to compare across time points, these
findings suggest that, in individuals prone to cocaine addiction, the
drug may affect the epigenetic modification of the dopamine D2
receptor in a manner that facilitates compulsive use. In agreement,
the epigenetic regulation of D2 was the only neuromolecular cor-
relate of addictive behavior, as it was strongly correlated with cue-
induced reinstatement. That is, the higher the levels of binding of
H3K9me3 at the D2 promoter, the more robust drug-seeking be-
havior was. This finding is especially intriguing because cue-induced
reinstatement represented a distinct dimension of the principal
components analysis. Thus, the association of H3K9me3 at the D2
promoter might be a key factor in cocaine addiction liability, and
especially in the propensity to relapse; and should therefore be
considered as a potential neuromolecular target for the treat-
ment of cocaine addiction.

Summary
In sum, using rats that are selectively bred based on locomotor
response to novelty, we demonstrated differences in the genetic
predisposition for cocaine addiction. bHR rats exhibit greater
addictive behavior relative to bLR rats, as measured by the
ability of a cocaine-associated cue to control behavior, the per-
sistence of cocaine-seeking behavior, and an increased propensity
for reinstatement of drug-seeking behavior. Furthermore, differ-
ential patterns of FGF2 expression and its epigenetic regulation in
the nucleus accumbens core exist before and following prolonged
cocaine self-administration, whereas differential patterns in ex-
pression and epigenetic regulation of the dopamine D2 receptor
were only evident before the cocaine-taking experience. In-
terestingly, however, the epigenetic regulation of D2 seems to be
predictive of the propensity for cue-induced reinstatement or
relapse. Taken together, these findings suggest that low D2
mRNA levels resulting from epigenetic modifications in the
nucleus accumbens core is associated with greater susceptibility,
whereas low levels of FGF2 and its epigenetic regulation may
protect individuals from cocaine addiction.
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Materials and Methods
A timeline of the experimental design can be found in Fig. 1. See SI Materials
and Methods for details. All procedures were approved by the University of
Michigan Committee on the Use and Care of Animals.

Selectively Bred Rats (bHR and bLR). bHR and bLR male rats from the 24th and
26th generations of our in-house breeding colony (74) were used.

Prolonged Cocaine Self-Administration Procedures.
Acquisition. The start of a session was signaled by illumination of the house
light. A nose poke into the port designated “active” resulted in an in-
travenous infusion of cocaine hydrochloride dissolved in 0.9% sterile saline
(1.0 mg/kg per infusion in 25 μL delivered over 1.6 s) on a fixed ratio (FR) 1
schedule. Concurrent with the delivery of cocaine was illumination of a
discrete cue light located inside the active nose-port. This light remained on
for an additional 18.4 s, resulting in a 20-s timeout period during which nose
pokes were recorded, but without consequence.

To control for the number of infusions and the number of drug–cue (i.e.,
active nose-port light) pairings, we imposed an infusion criterion (similar to
refs. 38 and 57) such that session length was determined by how long it took
the rats to reach a given criterion. Rats remained at each infusion criterion
for at least two sessions, or until they reached the criterion for two con-
secutive sessions. All rats were initially allowed to take five infusions, and
the infusion criterion was then increased to 10, 20, and 45. At 45 the cocaine
unit dose was lowered to 0.5 mg/kg (75), which was then used for the re-
mainder of the self-administration procedure.
Cue removal test. Rats from the 24th generation underwent the cue-removal
test. After rats showed stable behavior during the “drug-available” vs. “drug-
not-available” sessions, they were switched back to the original infusion
criterion 45 schedule for four sessions, during which drug was available the
entire session. Thus, the cue removal test occurred after ∼30 self-adminis-
tration sessions. The test session consisted of removal of the discrete cue
light located inside the active port, which previously signaled drug delivery
(Fig. 3). The session terminated when the rats self-administered 45 infusions,
similar to the baseline sessions, keeping the total number of infusions con-
stant. The rate at which cocaine was self-administered during the test session
relative to baseline (the session immediately preceding the test session) was
used to assess the ability of the discrete cue to control drug-taking behavior.
Persistence of drug-taking behavior. The prolonged self-administration pro-
cedure was adapted from ref. 25. Following the acquisition phase (i.e., after
∼20 d), daily sessions continued for ∼40 additional days. Each session during
this maintenance period consisted of three “drug-available” periods that
were signaled by house light illumination. Once rats received 15 infusions
during the drug-available period, the house light was turned off and a
“drug not available” period commenced. There were three “drug not
available” periods in a given session, and each was 15 min in duration. The
total length of the sessions was dependent on how long it took the rats to self-
administer the 45 infusions (i.e., 15 infusions per each “drug-available” period).
Cocaine priming-induced reinstatement. After ∼60 self-administration sessions,
rats were exposed to 1 wk of abstinence and then underwent extinction,
during which the house light was illuminated, but responses in both active
and inactive nose-ports were without consequence. Extinction sessions were
conducted until all rats were consistently responding at “baseline” levels,
(i.e., <10 responses per session for at least two consecutive sessions). This
resulted in 11 45-min extinction sessions over a 3-d period (Fig. 5A). Rats
were tested for reinstatement induced by cocaine-priming injections during
four 45-min sessions, similar to Lu et al. (40). All rats received 0, 5, 10, and
15 mg/kg cocaine in escalating order before each 45-min session. The re-
instatement test sessions were identical to the extinction sessions such that
responding in the nose-ports was without consequence. Reinstatement was
measured as the number of pokes in the active vs. inactive nose-port (i.e.,
active/inactive ratio) following each dose of cocaine.
Cue-induced reinstatement. After ∼1 mo of abstinence following prolonged
self-administration, the rats were exposed to another 13 45-min extinction
sessions conducted over a 4-d period (Fig. 5C). The cue-induced reinstate-
ment test was similar to that described by Grimm et al. (39), and began with
illumination of the house light and presentation of the discrete cue light in
the active nose-port that had previously accompanied cocaine infusion.
Following the first nose poke in the active port, each subsequent cue pre-
sentation was contingent upon responses (FR1) into this port. Thus, rats
were responding for presentation of the discrete cue light, similar to a
conditioned reinforcement procedure. The cue-induced reinstatement ses-
sion was 45 min in duration and during this time nose pokes into the active
and inactive ports were recorded.

Brain Tissue Processing. Details of tissue processing are provided in the SI
Materials and Methods.

Laser Capture Microdissection for Chromatin Immunoprecipitation. For laser-
capture microdissection (LCM) for chromatin immunoprecipitation (ChIP),
10-μm-thick coronal sections were cross-linked in 1% paraformaldehyde for
15 min at 25 °C and after proper washes, LCM was performed as described in
SI Materials and Methods. For each rat, ∼seven slides were used, resulting in
the bilateral collection of 40–50 nucleus accumbens cores per rat for the
ChIP assays.

ChIP Assays. Chromatin was extracted and sheared (Branson) from the LCM-
captured tissue. The amount of DNA was quantified and one-fifth of the
lysate was aliquoted for “input” before immunoprecipitation. Chromatin
from each sample was then subjected to immunoprecipitation using anti-
H3K9me3 (Abcam). Protein-DNA-antibody complexes were precipitated with
Dynabeads@protein A (Invitrogen) for 2 h at 4 °C, then eluted and reverse
cross-linked with 0.3 M NaCl at 65 °C overnight. Proteins were digested with
proteinase K for 1 h at 45 °C. The DNA was extracted and purified (Qiagen).
Specific primers (SI Materials and Methods and Table S2) directed to the
gene promoters for FGF2 or D2 were used for amplification. Following PCR,
the input and immunoprecipitated DNA for each sample were run on 1%
agarose gels and quantified using ImageJ (National Institutes of Health
Image software). The amount of immunoprecpitated DNA was normalized
to the input for each sample.

In Situ Hybridization Histochemistry. In situ hybridization was performed as
previously described (76, 77) using brain sections adjacent to those used for
LCM. Postfixed sections were hybridized with a 35S-labeled cRNA probe di-
rected against rat FGF2 mRNA or D2 mRNA. Following posthybridization
rinses and dehydration, slides were opposed to Kodak Biomax MR film
(Eastman Kodak). Autoradiograms were captured and digitized and the
magnitude of the signal from the hybridized 35S-cRNA probe was deter-
mined using ImageJ (National Institutes of Health Image software) (SI
Materials and Methods). One bLR sample from the post self-administration
group had to be eliminated from the FGF2 mRNA analysis because of poor
tissue quality.

Statistical Analyses.
Behavioral data. Linear mixed-effects models (78) were used to examine sig-
nificant main effects (e.g., Phenotype, Session) and interactions for behav-
ioral data with repeated longitudinal measures. The covariance structure
was explored and modeled appropriately for each dependent variable and
when significant interactions were detected Bonferroni post hoc comparisons
were conducted. Independent t tests were used to examine phenotypic dif-
ferences on the cue-removal test. A repeated measures two-way (Phenotype ×
Phase) ANOVA was used to examine drug-seeking behavior during the dif-
ferent periods (“drug available” and “drug not-available”) of the mainte-
nance phase, and a two-way (Phenotype × Nose-Port) ANOVA was used to
assess differences in nose poke responding between bHRs and bLRs during
the cue-induced reinstatement test.

Principal components analysis was used to reduce the behavioral data to
fewer dimensions and to identify underlying constructs. The behavioral
variables analyzed were: (i) locomotor response to novelty, (ii) acquisition,
(iii) persistence of drug-seeking, (iv) drug-induced reinstatement, and
(v) cue-induced reinstatement. The formulas used to generate each of
these measures are described in SI Materials and Methods.
Neurobiological data. For data generated by ChIP assays and in situ hybrid-
ization, phenotypes were compared at baseline or following prolonged self-
administration using independent t tests.
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SI Materials and Methods
Selectively Bred Rats (bHR and bLR). bHR and bLR male rats from
the 24th (bHR, n = 11; bLR, n = 11) and 26th (bHR, n = 19;
bLR, n = 18) generations of our in-house breeding colony (74)
were used for these studies. These rats are bred based on loco-
motor response to an inescapable novel environment, as previously
described (17). The founding population of these lines was
comprised of Sprague–Dawley rats purchased from three dif-
ferent breeding colonies at Charles River Laboratories and a
number of measures were taken to maximize initial genetic
variation and to minimize inbreeding in these lines (17). Males
and females that fall within the top and bottom 20% of loco-
motor scores are selected for breeding, allowing us to predict
with almost 100% certainty that bLR offspring will be generated
from a bLR/bLR breeding pair and bHR offspring from a bHR/
bHR breeding pair (17, 18). Nonetheless, before the start of these
studies, around 55 d of age, the bHR/bLR phenotype was con-
firmed by testing rats for locomotor response to a novel envi-
ronment, as previously described (17, 19). Rats were housed in
pairs of the same phenotype and kept on a 12-h–light/12-h–dark
cycle with controlled temperature and humidity.

Prolonged Self-Administration Procedures. Self-administration train-
ing began around 80 d of age, following recovery from surgery (see
below). For the duration of the self-administration studies, rats
were singly housed and a controlled feeding procedure was
implemented such that ∼25 g of chow was provided after each self-
administration session. This feeding procedure allowed rats to
maintain bodyweight throughout the prolonged self-administra-
tion studies and prevented loss of catheter patency because of
excessive growth. The controlled feeding schedule also helped
ensure that the rats were motivated to self-administer cocaine. All
procedures were approved by the University of Michigan Com-
mittee on the Use and Care of Animals.
Jugular catheterization. Rats underwent jugular catheterization sur-
gery around 70 d of age, as previously described (80, 81). Catheters
and backports were made in-house. Briefly, one end of silicone
catheter was inserted into the external jugular vein and the other
was passed subcutaneously to exit the back of the rat, where it was
connected to a pedestal constructed from a 22-gauge cannula and
connected to a piece of polyethylene mesh using dental cement.
Rats were administered 0.1 mL of a mixture containing gentamicin
(10 mg/mL) and heparin (20 USP units) in bacteriostatic saline the
day of surgery and for 14 d after surgery. Every day thereafter,
0.1 mL of the heparin solution (20 USP units) was administered
before and immediately following each self-administration session.
Catheter patency. Catheter patency was checked on a weekly basis
by injecting 0.1 mL of the short-acting barbiturate, sodium thi-
opentothal (intravenously, 20 mg/mL in sterile water). Rats that
became ataxic within 5 s were considered to have patent catheters.
If behavioral changes suggested loss of patency, the catheter was
immediately checked and, under some circumstances, the rat would
undergo additional surgery to repair or replace the catheter. Most
often, however, rats were eliminated from the study if catheter
patency was lost. In total, 10 bHRs and 6 bLRs were eliminated
because of loss of catheter patency. Data were excluded from these
rats in the week that preceded the failed patency test and there-
after. Thus, the number of rats per phenotype differed throughout
the self-administration paradigm depending on whether or not
their catheters were considered patent.
Apparatus. Self-administration training and testing occurred in
standard (21.6 × 17.8 × 12.7 cm) test chambers (Med Associates)

located inside sound-attenuating cabinets equipped with a fan to
mask background noise. Two nose-poke ports were located 3 cm
above the stainless steel grid floor on a wall opposite the house
light. The cocaine infusion was delivered by an external pump
connected to a tube that attached to the back port located in the
midscapular region of the rat. The infusion tube was suspended
in the chamber via a swivel mechanism, allowing the rat to move
freely. Behavioral measures were recorded using Med Associates
software. Nose pokes into the port designated “inactive” were
recorded, but without consequence.

Addiction Score: Selection of Brain Tissue. The Addiction Score was
calculated based on the sum of the following measures: (i) Inverse
Acquisition Score = (1/average intertrial interval at infusion
criteria 5 and 10); Persistence of Drug Seeking = [(average of
pokes in active port during “drug not available”/pokes in active
port during “drug available” for sessions ∼35–40 of maintenance
phase) × 100]; Drug-induced reinstatement = [(average [pokes
in active port/pokes in inactive port in response to 5, 10, or
15 mg/kg cocaine]/(pokes in active port/pokes in inactive port in
response to vehicle)]; Cue-induced reinstatement = (average
pokes in active port/pokes in inactive port). Thus, higher values
represented rats with the most pronounced drug-taking and
drug-seeking behaviors.

Brain Tissue Processing. Rats from the 26th generation that un-
derwent the prolonged self-administration procedures were killed
∼1 wk following the cue-induced reinstatement test. Thus, ∼1 mo
elapsed between the last drug experience (i.e., cocaine priming-
induced reinstatement) and the time of tissue collection. After
self-administration, tissue was collected and analyzed from the
six rats per phenotype, chosen based on their Addiction Score.
At the time of killing, brains were removed, rapidly frozen in

isopentane and then stored at −80 °C until further processing.
Brains were cut on a cryostat into 10-μm-thick coronal sections
and mounted onto slides in a serial manner. The serial method
we used resulted in multiple sets of slides with adjacent sections
that could be used for cresyl-staining, LCM, and in situ hybridiza-
tion, as described below. Brain sections were obtained throughout
the rostral-caudal gradient of the brain, but the focus of the
current studies was on the nucleus accumbens core (between
bregma 1.7 and 1.0 mm).

ChIP Assays. Following LCM, the extracted tissue for each rat was
pooled and suspended in 500 μL of nuclear lysis buffer. The
nuclear extract was quantified using Qubit Fluorometric Quan-
titation and an equal amount of nuclear extract was added for
the ChIP assays. The putative promoter regions were identified
from the National Center for Botechnology Information gene
bank and the primers were selected using software from Thermo
Fisher Scientific (tools.thermofisher.com/content.cfm?pageid=9716).
For FGF2 and D2, the promoter sequences were obtained from
GenBank ID-U78079.1 and GenBank ID-U79717.1 and the
primers directed to the gene promoters listed in Table S2 (which
were further BLAST with the promoter sequence) were used for
amplification. For PCR, Taq MeanGreen Master Mix (Syzygy
Biotech) was used. For the thermal cycler reaction, the mix was
first subjected to 94 °C for 3 min, followed by denaturation at
94 °C for 30 s Annealing was done at 58 °C for 40 s and extension
at 72 °C for 2 min. Cycles were repeated 34 times for FGF2 and
31 times for D2, followed by final extension at 72 °C for 7 min.
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The amplified products were mixed with loading dye and run in
1% agarose gel containing ethidium bromide. The gels were
imaged with the Spectroline UV Transilluminator 2.5 Amp,
Model UC-312R attached to a camera (Kodak DC 290: Kodak
Electrophoresis Documentation and Analysis System 120), and
the software used to capture the image before analysis was Kodak
1D Limited Edition v3.6.1. The total DNA (input) and immu-
noprecipitated DNA was quantified using ImageJ (National In-
stitutes of Health Image software). We report the binding ratio of
H3K9me3 normalized to input for each target of interest.

In Situ Hybridization Histochemistry. The D2 receptor probe was a
495-bp fragment directed against the rat D2 mRNA, and the
FGF2 probe was a 278-bp fragment directed against rat FGF
mRNA. The specificity of the hybridization signal was previously
confirmed by control experiments using sense probes (19). Each
probe was diluted in hybridization buffer, and brain sections were
coverslipped and incubated overnight at 55 °C. Slides were rinsed
and dehydrated and sections were exposed to film for 7 d for
detection of D2 mRNA and for 13 wk for FGF2 mRNA. Autora-
diograms were captured and digitized using Microtek ScanMaker
1000XL and the scanner was driven by Lasersoft Imaging
(SilverFast) software.
A macro (Serge Campeau, University of Colorado, Boulder,

CO) was integrated into the ImageJ software, which enabled
signal above background to be automatically determined. The
relative IOD of these signal pixels was obtained by multiplying the
size of the area quantified by the signal intensity. The signal for
each probe was quantified in the core of the nucleus accumbens
(between Bregma levels 1.7 and 1.0). Optical density measure-
ments were taken from the left and right sides of at least two brain
sections per animal. A mean IOD value was then generated for
each region of interest to yield one data point per animal. In-
dependent t tests were used to examine phenotypic differences
for D2 and FGF mRNA at baseline and following prolonged
self-administration.

Statistical Analysis. As an alternative approach for accounting for
differences in responding in the inactive port during the cocaine
priming-induced reinstatement test, we ran an ANCOVA using
SPSS (v22) that incorporated the number of pokes into the in-
active port as a continuous covariate, with pokes into the active
port as the dependent variable. Error terms within a rat were
allowed to have a general (unstructured) covariance structure,
with different error variances for different doses and general
covariances of the repeated measures. The existence of negative
covariances between some of the errors precluded the use of
mixed-effects (or multilevel) models with random rat effects.

SI Results
Acquisition of Self-Administration.Three bLRs were excluded from
the study for never reaching five infusions, and one bHR and
three bLRs were excluded after they consistently failed to reach
10 infusions at IC10.

Cocaine Priming-Induced Reinstatement.
Extinction. During extinction, responses in the nose-ports were
recorded, but without consequence. When the total number of
responses across all extinction sessions was examined, there was a
significant effect of Phenotype [F(1, 28) = 32.6, P < 0.001], Port
[F(1, 28) = 22.2, P < 0.001], and a Phenotype × Port interaction
[F(1, 28) = 9.3, P = 0.005]. Post hoc analyses revealed that bHRs
responded significantly more in both the active and inactive
ports (P < 0.01), but both phenotypes responded more in the
active port relative to the inactive port (P < 0.05).
When responding was considered with Session as the repeated

variable, the most pronounced and significant differences in
responding in the active port between phenotypes occurred during

the first three sessions (P ≤ 0.002) and then on sessions 5 (P <
0.001) and 10 (P = 0.003), which were the first sessions con-
ducted on a given day. Furthermore, there were also significant
differences between bHRs and bLRs in responding in the in-
active port on sessions 1 (P = 0.01) and 5 (P = 0.006). The
greater activity for bHRs upon initial placement into the testing
chamber on a given day is not surprising given their general
hyperaroused state and delayed patterns of locomotor habitua-
tion to a given environment (19). Thus, it is difficult to parse
differences in locomotor activity from differences in the rate of
extinction.
Test. It should be noted that the raw data (Fig. 5D) indicate a
decrease in responding in the active port at higher doses of co-
caine, which is not necessarily consistent with what one might
expect. However, we suspect that this decrease in responding is
because of some rats going into stereotypy at locations distal
from the port, as a result of the repeated escalating doses of
cocaine. Unfortunately, the behavior of the rats was not video-
taped, so this is merely speculation based on real-time observa-
tion of a few rats.
Using an ANCOVA as an alternative approach to account for

differences in responding at the inactive port, with Inactive Port
as a continuous covariate and Pokes into the Active Port as the
dependent variable, there was a significant effect of Pokes into the
Inactive Port [F(1, 9.9) = 14.8, P = 0.003]; a significant effect of
Dose [F(3, 17.1) = 3.7, P = 0.03]; a significant interaction between
Phenotype and Pokes into the Inactive Port [F(1, 16.7) = 5.1, P =
0.04]; and a significant interaction between Dose and Pokes into
the Inactive Port [F(3, 17.6) = 6.2, P = 0.005]. Thus, the more
active the rats are in general (i.e., at the inactive port), the larger
the phenotypic differences are in the number of pokes into the
active port, and this is true regardless of dose (Fig. S2A). Fur-
thermore, the dose effects become larger as the number of pokes
into the inactive port becomes greater, independent of pheno-
type (Fig. S2B). Post hoc comparisons of means across levels of
dose and phenotype were conducted using five hypothesized
values (0, 2, 4, 6, 8) of pokes into the inactive port, and the re-
sults demonstrate that: (i) as the number of pokes into the in-
active port increases, the effect of phenotype increases; and
(ii) as the number of pokes into the inactive port increases, the
dose-effect differences in responding at the active port becomes
more apparent (Fig. S2 C and D). These data support the pheno-
typic differences reported in the primary text (Fig. 5D), and further
highlight the importance of considering responses in the inactive
port.

Cue-Induced Reinstatement: Extinction. When the total number of
responses across all extinction sessions was examined, there was a
significant effect of Phenotype [F(1, 28) = 17.2, P = 0.0003] and
Port [F(1, 28) = 6.2, P = 0.02], but no significant interaction, as the
differences in responding between the phenotypes was similar
for both the active and inactive ports. When responding was
considered with Session as the repeated variable there was a sig-
nificant effect of Phenotype [F(1, 14) = 19.2, P = 0.001], Port
[F(1, 350) = 12.1, P = 0.001], and Session [F(12, 350) = 5.1, P < 0.001],
and a significant Phenotype × Session interaction [F(12, 350) = 5.1,
P = 0.002] for nose pokes during the extinction sessions. We con-
ducted pairwise comparisons based on the patterns of respond-
ing we saw during the previous extinction sessions and, as shown
in Fig. 5B, the significant differences in responding in the active
port were again restricted to the first session on each day of
testing (i.e., session 1, P < 0.001; session 4, P = 0.007; session 8,
P = 0.03) with no significant differences after session 8. Significant
differences in responding in the inactive port were only apparent
on session 1 (P = 0.02) and session 6 (P < 0.001), with the latter
being because of a single rat exhibiting aberrant behavior that
session. Similar to above, we do not believe these data support
differences in the rate of extinction as currently measured.
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Principal Components Analysis. As shown in Table S1, when the
principal components analysis was conducted for each of the
phenotypes separately, three factors were identified for bHRs
that together accounted for 91% of the variance in their be-
havior, and two factors were identified for bLRs that together
accounted for 81% of the variance. For bHRs, Factor 1 ac-
counted for 37% of the variance and was largely defined by lo-
comotor response to novelty and cue-induced reinstatement.
Factor 2 accounted for 29% of the variance and was largely
defined by behavior during the acquisition phase of cocaine self-
administration and drug-induced reinstatement; and Factor 3
accounted for 23% of the variance and had a single significant
loading associated with the persistence of drug-seeking behavior.
For bLRs, Factor 1 accounted for 51% of the variance in be-
havior and was largely defined by locomotor response to nov-
elty, persistence of drug-seeking behavior, and cue-induced

reinstatement. Factor 2 for bLRs was very similar to Factor 2 for
bHRs, accounting for 30% of the variance in behavior and de-
fined primarily by behavior during the acquisition phase and
drug-induced reinstatement (in agreement with ref. 82). Thus,
although there appear to be similar constructs underlying some
of the addiction-related behaviors exhibited by bHRs and bLRs,
others are phenotype-dependent; notably, the persistence of
drug-seeking behavior.

Addiction Score. The resulting Addiction Scores ranged between
22 and 190, and brains were analyzed from the “extremes” of the
population, resulting in six bLRs within the range of 22–44 and
six bHRs within 53–190. It is important to reiterate, however,
that despite the range in Addiction Scores, all rats received the
same amount of cocaine throughout the study.

Fig. S1. Representative images of the nucleus accumbens core (A) before and (B) after LCM. The captured core can be seen in B in the “shadow” to the lower
right of the lighter captured area. (Magnification: 3×.)
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Fig. S2. Covariate-adjusted means for nose poke responding during the cocaine priming-induced reinstatement test. The mean + SEM covariate adjusted
values for responses in the active port when considering responses in the inactive port as a continuous covariate are illustrated across increasing values of
responses in the inactive port for (A) bHRs and bLRs collapsed across doses, and (B) each dose collapsed across phenotypes. Significant differences emerge
between the phenotypes with increasing values of responses in the inactive port (A: *P < 0.05, bHR vs. bLR,). The dose-effects also become more prominent
with increasing values of responses in the inactive port (B: *P < 0.05 vs. 0; #P = 0.08 vs. 0).

Flagel et al. www.pnas.org/cgi/content/short/1520491113 3 of 5

www.pnas.org/cgi/content/short/1520491113


0 1 2 3 4 5 6 7 8 9 10

0 5 10 15 20 25 30 35 40 45 50

B
in

di
ng

 R
at

io
 (K

3K
9m

e3
:D

2)

Reinstatement Ratio

B
in

di
ng

 R
at

io
 (K

3K
9m

e3
:D

2)

Reinstatement Ratio

bHR: R2=0.80

bLR: R2=0.70

A

B

.20

.25

.30

.35

.40

.45

.50

.55

.60

.20

.25

.30

.35

.40

.45

.50

.55

.60

Fig. S3. Bivariate scatterplots illustrating the relationship between the propensity for cue-induced reinstatement of cocaine-seeking and epigenetic regu-
lation of the dopamine D2 receptor. There is a significant positive correlation between the association of H3K9me3 at D2 and the ratio of active/inactive nose
pokes (i.e., reinstatement ratio) during the cue-induced reinstatement test for both (A) bHRs (n = 6, P = 0.02) and (B) bLRs (n = 6, P = 0.04).

Table S1. Principal components analysis, behavioral variables

Behavioral variables

bHRs bLRs

Factor 1 Factor 2 Factor 3 Factor 1 Factor 2

Locomotor response to novelty 0.92 −0.05 −0.30 0.80 −0.41
Acquisition −0.23 0.94 −0.22 −0.09 0.96
Persistence of drug-seeking −0.62 −0.04 0.98 0.85 0.08
Drug-induced reinstatement 0.23 0.74 0.47 −0.08 0.89
Cue-induced reinstatement −0.88 −0.18 −0.25 −0.89 0.09

Eigenvalue 1.89 1.47 1.19 2.55 1.52
Percent of variance (%) 37.72 29.40 23.70 50.95 30.45

Factor loadings from the rotated component matrix are shown separately for bHRs and bLRs. Loadings >±0.7
are shown in bold. For bHRs, the total variance accounted for by all three factors is 91%. For bLRs, the total
variance accounted for is for by 2 factors is 81%.
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Table S2. Primers for the ChIP experiment

Genes Primers for ChIP Source (accession ID)

FGF2 Forward 5′-ACACGCAGGGAGAGAAGCTA-3′ Reverse 3′-GGGAAGATGAAAACCGTTGA-5′ U78079
D2 Forward 5′-GTCCAGGGCACATAGGAAAA-3′ Reverse 5′-AACCAGCAGTGGAACAGTCC-3′ U79717

The primers directed to the promoter regions for FGF2 and D2 are listed, as is the accession ID for each of the genes analyzed
using ChIP.
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