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Introduction: There has been growing interest in a better understanding of the etiology of compulsive sexual
behavior (CSB). It is assumed that facilitated appetitive conditioning might be an important mechanism for the
development and maintenance of CSB, but no study thus far has investigated these processes.

Aim: To explore group differences in neural activity associated with appetitive conditioning and connectivity in
subjects with CSB and a healthy control group.

Methods: Two groups (20 subjects with CSB and 20 controls) were exposed to an appetitive conditioning
paradigm during a functional magnetic resonance imaging experiment, in which a neutral stimulus (CSþ)
predicted visual sexual stimuli and a second stimulus (CS-) did not.

Main Outcome Measures: Blood oxygen level-dependent responses and psychophysiologic interaction.

Results: As a main result, we found increased amygdala activity during appetitive conditioning for the CSþ vs
the CS- and decreased coupling between the ventral striatum and prefrontal cortex in the CSB vs control group.

Conclusion: The findings show that neural correlates of appetitive conditioning and neural connectivity are
altered in patients with CSB. The increased amygdala activation might reflect facilitated conditioning processes in
patients with CSB. In addition, the observed decreased coupling could be interpreted as a marker for impaired
emotion regulation success in this group.

J Sex Med 2016;13:627e636. Copyright � 2016, International Society for Sexual Medicine. Published by Elsevier
Inc. All rights reserved.
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INTRODUCTION

The development in Internet and streaming services (eg, by
smartphones) has provided new, fast, and anonymous ways to
access sexually explicit material (SEM). Exposure to SEM is
accompanied by specific subjective, autonomous, behavioral, and
neural responses.1e7 Analyses in Britain in 2013 showed that
approximately 10% of the Internet traffic were on adult sites that
exceeded traffic across all social networks.8 An online question-
naire study investigating the motivation for Internet pornog-
raphy identified four factors—relationship, mood management,
habitual use, and fantasy.9 Although most of the predominantly
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male users have no problems with their SEM consumption, some
men describe their behavior as a compulsive sexual behavior (CSB)
characterized by excessive use, loss of control, and inability to
decrease or stop the problematic behavior, resulting in consider-
able economically, physically, or emotionally negative conse-
quences to self or others. Although these men often describe
themselves as “sex or porn addicts,” there are competing theories
regarding the nature and conceptualization of CSB. Some in-
vestigators have interpreted this behavior as an impulse control
disorder,10 mood regulation deficit, obsessive-compulsive disor-
der,11 or behavioral addiction disorder,12 whereas others have
avoided etiologic associations by using the term non-paraphilic
hypersexuality disorder.13 Other investigators have challenged the
need for a distinct diagnosis in general.14,15 Therefore, neurobi-
ological experiments investigating the neural correlates of CSB are
important to gain more insight into the underlying mechanisms.

It has been proposed that facilitated appetitive conditioning
might be a crucial mechanism for the development and
maintenance of addictions and further psychiatric disorders.16,17

In appetitive conditioning paradigms, a neutral stimulus (CSþ)
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Table 1. Demographic and Psychometric Measurements for CSB
and Control Groups*

CSB
group

Control
group Statistics

Age 34.2 (8.6) 34.9 (9.7) t ¼ 0.23,
P ¼ .825

BDI-II 12.3 (9.1) 7.8 (9.9) t ¼ 1.52,
P ¼ .136

Time spent watching
time SEM, min/wk

1,187 (806) 29 (26) t ¼ 5.53,
P < .001

Axis I disorder
MD episode 4 1
Recurrent MD disorder 4
Social phobia 1
Adjustment disorder 1
Specific phobia 1 1
Orgasmic-erection
disorder

3

Somatoform disorder 1
Axis II disorder

Narcissistic personality
disorder

1

Psychiatric medication
Amitriptyline 1

BDI ¼ Beck Depression Inventory II; CSB ¼ compulsive sexual behavior;
MD ¼ major depressive; SEM ¼ sexual explicit material.
*Data are presented as mean (SD).
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is paired with an appetitive stimuli (UCS), while a second neutral
stimulus (CS�) predicts the absence of the UCS. After a few
trials, the CSþ elicits conditioned responses (CRs) such as
increased skin conductance responses (SCRs), changes in prefer-
ence ratings, and altered neural activity.16,18,19 Regarding the
neural correlates of appetitive conditioning, a network has been
identified that includes the ventral striatum, amygdala, orbito-
frontal cortex (OFC), insula, anterior cingulate cortex (ACC), and
occipital cortex.20e24 Hence, the ventral striatum is involved in
appetitive conditioning because of its central role in anticipation,
reward processing, and learning.25,26 However, in contrast to the
ventral striatum, the role of the amygdala for appetitive condi-
tioning is less clear. Although many animal and human studies
have repeatedly confirmed the amygdala as the central region for
fear conditioning,27 its involvement in appetitive conditioning
has been investigated only rarely. Recently, animal and human
studies have demonstrated that the amygdala is involved in the
processing of appetitive stimuli, appetitive conditioning, and
processing of CSB using various stimuli and designs.28e36 For
instance, Gottfried et al29 found increased amygdala activation
to the CSþ vs the CS� during human appetitive conditioning
using pleasant odors as the UCS. Activations in the OFC, insula,
ACC, and occipital cortex are often interpreted as conscious
and/or in-depth evaluation processes of the stimuli.16

To date, only two functional magnetic resonance imaging
(fMRI) studies have investigated the neural correlates of CSB and
found increased activations in the amygdala and ventral striatum
as well as altered neural connectivity in subjects with CSB during
the presentation of related (sexual) cues.35,36 These structures are
in line with other studies investigating the neural correlates of
addiction disorders and impulse control deficits.37,38 For
instance, meta-analytical findings have shown a significant
correlation between amygdala activation and the intensity of
craving.37 Another study that used diffusion tensor imaging
found increased white matter microstructure integrity in
prefrontal areas in subjects with CSB and a negative correlation
between CSB and structural connectivity in the frontal lobe.39

In addition to the importance of appetitive conditioning
processes, impairments in the inhibition of impulsive behavior
are crucial for the development and maintenance of many
psychiatric disorders and dysfunctional behaviors.40,41 These
difficulties with inhibition can explain the loss of control of
subjects with CSB when confronted with related cues. Regarding
the neural correlates of impulsive behavior and its regulation, the
ventral striatum and ventromedial prefrontal cortex (vmPFC)
seem to be important antagonists: the ventral striatum is assumed
to be relevant for initiating impulsive behavior, whereas its
downregulation is driven by the vmPFC through reciprocal
connections.42 For instance, previous results have linked
impaired ventral striatal and prefrontal connectivity to trait
impulsivity and to impulsive behavior.42,43

However, no study thus far has investigated the neural
correlates of appetitive learning mechanisms or the loss of control
in subjects with CSB compared with healthy controls. Based on
the literature cited earlier, the first aim of the present study was to
explore the hemodynamic responses of appetitive conditioning in
these subjects compared with a matched control group. We
hypothesized increased activation in the amygdala and ventral
striatum in subjects with CSB compared with the control group.
The second aim was to explore connectivity differences between
the two groups. Identifying the neural substrate of altered appe-
titive conditioning and connectivity in these subjects would have
implications not only for the understanding of the development
and maintenance of this behavior but also for treatment strategies,
which typically focus on behavioral modification through altered
learning experiences (eg, cognitive behavioral therapy).44
METHODS

Participants
Twenty men with CSB and 20 matched controls were

recruited by self-referral after an advertisement and referrals of
a local outpatient clinic for cognitive behavioral therapy
(Table 1). All participants had normal or corrected-to-normal
vision and signed an informed consent. The study was
conducted in accordance with the Declaration of Helsinki. All
participants underwent structural clinical interviews to diagnose
Axis I and/or Axis II diagnoses. Participants classified as
J Sex Med 2016;13:627e636
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having CSB had to fulfill all criteria for hypersexuality adapted
for CSB13:

1. For at least 6 months, recurrent and intense sexual fantasies,
urges, and sexual behavior must be associated with at least
four of the following five criteria:
a. Excessive time consumed by sexual fantasies and urges and

by planning and engaging in sexual behavior
b. Repetitively engaging in these sexual fantasies, urges, and

behavior in response to dysphoric mood states
c. Repetitively engaging in sexual fantasies, urges, and

behavior in response to stressful life events
d. Repetitive but unsuccessful efforts to control or signifi-

cantly decrease these sexual fantasies, urges, and behavior
e. Repetitively engaging in sexual behavior while disregarding

the risk for physical or emotional harm to self and others
2. Clinically significant personal distress or impairment in social,

occupational, or other important areas of functioning associ-
ated with the frequency and intensity of these sexual fantasies,
urges, and behavior

3. These sexual fantasies, urges, and behavior are not due to the
direct physiologic effects of exogenous substances, medical
conditions, or manic episodes

4. Age at least 18 years

Conditioning Procedure
The conditioning procedure was conducted while performing

fMRI (see below for details). A differential conditioning proce-
dure with 42 trials was used (21 per CS). Two colored squares
(one blue, one yellow) served as the CS and were counter-
balanced as CSþ and CS� across subjects. The CSþ was
followed by 1 of 21 erotic pictures (100% reinforcement). All
pictures depicted couples (always one man and one woman)
showing explicit sexual scenes (eg, practicing vaginal intercourse
in different positions) and were presented in color with
800 � 600 pixel resolution. The stimuli were projected onto a
screen at the end of the scanner (visual field ¼ 18�) using an
LCD projector. Pictures were viewed through a mirror mounted
on the head coil. The CS duration was 8 seconds. The erotic
pictures (UCS) appeared immediately after the CSþ
(100% reinforcement) for 2.5 seconds followed by the intertrial
interval of 12 to 14.5 seconds.

All trials were presented in a pseudo-randomized order: The
same CS was not presented more than twice in succession. The
two CS were presented equally often in the first and second
halves of the acquisition. The first two trials (one CSþ trial, one
CS� trial) were excluded from the analyses because learning
could not yet have occurred, resulting in 20 trials for each CS.45
Subjective Ratings
Before the experiment and immediately after the conditioning

procedure, participants rated valence, arousal, and sexual arousal
of the CSþ, CS�, and UCS on a 9-point Likert scale and their
UCS expectancy on a 10-point Likert scale. For the CS ratings,
J Sex Med 2016;13:627e636
statistical analyses were performed by analysis of variance
(ANOVA) in a 2 (CS type: CSþ vs CS�) � 2 (time: before vs
after acquisition) � 2 (group: CSB vs control group) design
followed by post hoc tests in SPSS 22 (IBM Corporation,
Armonk, NY, USA) for each rating. Appropriate post hoc t-tests
were conducted to analyze significant effects further. For the
erotic pictures, two-sample t-tests were performed to analyze
group differences.
Skin Conductance Measuring
The SCRs were sampled using Ag-AgCl electrodes filled with

isotonic (NaCl 0.05 mol/L) electrolyte medium placed at the
non-dominant left hand. An SCR was defined as a single phasic
response after stimulus onset. Therefore, the largest difference
between a minimum and subsequent maximum within the 1 to 4
seconds after CS onset was defined as the first interval response
(FIR), that within the 4 to 8 seconds as the second interval
response (SIR), and that within 9 to 12 seconds as the third
interval response (TIR). The responses within the analysis
windows were extracted using Ledalab 3.4.4.46 These responses
are log (mS þ 1) transformed to correct for violation of normal
distribution of the data. Five subjects (three with CSB and two
controls) did not show any SCRs (no increased responses to the
UCS) and were excluded from the analysis. Mean SCRs were
analyzed by ANOVA in a 2 (CS type: CSþ vs CS�) � 2 (group:
CSB vs control group) design followed by post hoc tests using
SPSS 22.
Magnetic Resonance Imaging

Hemodynamic Activity
Functional and anatomic images were acquired with a 1.5-Tesla

whole-body tomograph (Siemens Symphony with a quantum
gradient system; Siemens AG, Erlangen,Germany)with a standard
head coil. Structural image acquisition consisted of 160
T1-weighted sagittal images (magnetization prepared rapid
acquisition gradient echo; 1-mm slice thickness; repetition
time ¼ 1.9 seconds; echo time ¼ 4.16 ms; field of view ¼ 250 �
250 mm). During the conditioning procedure, 420 images were
acquired using a T2*-weighted gradient echo-planar imaging
sequence with 25 slices covering the entire brain (slice thickness¼
5 mm; gap¼ 1 mm; descending slice order; repetition time¼ 2.5
seconds; echo time ¼ 55 ms; flip angle ¼ 90�; field of view ¼
192 � 192 mm; matrix size ¼ 64 � 64). The first two volumes
were discarded owing to an incomplete state of magnetization.
Data were analyzed using Statistical Parametric Mapping (SPM8,
Wellcome Department of Cognitive Neurology, London, UK;
2008) implemented in MATLAB 7.5 (Mathworks Inc., Sher-
bourn, MA, USA). Before all analyses, data were preprocessed,
which included realignment, unwarping (b-spline interpolation),
slice-time correction, co-registration of functional data to each
participant’s anatomic image, and normalization to the standard
space of the Montreal Neurological Institute brain. Spatial
smoothing was executed with an isotropic three-dimensional
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Gaussian filter with a full width at half maximum of 9mm to allow
for corrected statistical inference.

On the first level, the following contrasts were analyzed for
each subject: CSþ, CS�, UCS, and non-UCS (defined as the
time window after CS� presentation corresponding to the time
window of UCS presentation after the CSþ47e49). A stick
function was selected for each regressor. Each regressor was
independent of the others, did not include shared variance
(cosine angle < 0.20), and was convolved with the hemodynamic
response function. The six movement parameters of the rigid
body transformation obtained by the realignment procedure were
introduced as covariates in the model. The voxel-based time
series was filtered with a high-pass filter (time constant ¼ 128
seconds). The contrasts of interest (CSþ vs CS�; CS� vs CSþ;
UCS vs non-UCS; non-UCS vs UCS) were defined for each
subject separately.

For the second-level analyses, one- and two-sample t-tests were
conducted to investigate the main effect of task (CSþ vs CS�;
UCS vs non-UCS) and differences between groups. Statistical
corrections for region-of-interest (ROI) analyses were conducted
with an intensity threshold of P ¼ .05 (uncorrected), k ¼ 5, and
a significance threshold (P ¼.05; corrected for familywise error,
k ¼ 5), and whole-brain analyses were conducted with a
threshold at P ¼ .001 and k > 10 voxels. All analyses were
computed with SPM8.

Although no group differences in UCS ratings and BDI scores
were observed, we conducted further analyses including UCS
ratings and BDI scores as covariates to account for potential
confounding effects of UCS experiences and comorbidity. Results
remained almost stable (no further group differences; reported
group differences remained significant). Anatomic masks for ROI
analyses of the amygdala (2,370 mm3), insula (10,908 mm3),
occipital cortex (39,366 mm3), and OFC (10,773 mm3) were
taken from theHarvard-Oxford Cortical and Subcortical Structural
Atlases (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) (25% proba-
bility) provided by the Harvard Center for Morphometric
Analysis and the ventral striatum mask (3,510 mm3) from the
Human Brain Project Repository database based on the Brain-
Map database. The Harvard-Oxford atlas is a probabilistic atlas
based on T1-weighted images of 37 healthy subjects (N ¼ 16
women). The vmPFC mask (11,124 mm3) was created with
MARINA50 and has been used in many previous studies.51e54
Psychophysiologic Interaction Analysis
Psychophysiologic interaction (PPI) analysis,55 which explores

the modulation of the connectivity between a seed region and
other brain areas by an experimental task, the so-called psycho-
logical variable (CSþ vs CS�), was conducted. The seed regions,
the ventral striatum and amygdala, were prespecified in two
separate analyses based on the used ROIs (see above). In a first
step, we extracted the first eigenvariate for each seed region as
implemented in SPM8. Then, the interaction term was created
by multiplying the eigenvariate with the psychological variable
(CSþ vs CS�) for each subject and convolving it with the
haemodynamic response function. First-level analyses were con-
ducted for each subject including the interaction term as re-
gressor of interest (PPI regressor) and the eigenvariate as well as
the task regressor as nuisance regressors.55 At the second level, we
analyzed group differences in connectivity (PPI regressor) be-
tween the CSB group and the control group using two-sample t-
tests with the vmPFC as the ROI. Statistical corrections were
identical to the previous fMRI analyses.
RESULTS

Subjective Ratings
ANOVA showed significant main effects of CS type for

valence (F1,38 ¼ 5.68; P < 0.05), arousal (F1,38 ¼ 7.56;
P < .01), sexual arousal (F1,38 ¼ 18.24; P < .001), and UCS
expectancy ratings (F1,38 ¼ 116.94; P < .001). In addition,
significant CS type � time interaction effects were found for
valence (F1,38 ¼ 9.60; P < .01), arousal (F1,38 ¼ 27.04;
P < .001), sexual arousal (F1,38 ¼ 39.23; P < .001), and UCS
expectancy ratings (F1,38 ¼ 112.4; P < .001). Post hoc tests
confirmed successful conditioning (significant differentiation
between CSþ and CS�) in the two groups, showing that the
CSþ was rated as significantly more positive, more arousing, and
more sexually arousing than the CS� after (P < .01 for all
comparisons), but not before the acquisition phase, indicating
successful conditioning in the two groups (Figure 1). Further
analyses showed that these differences were based on increased
CSþ scores and decreased CS� scores over time (P < .05 for all
comparisons). No group differences were found regarding
valence (P ¼ .92) and arousal (P ¼ .32) ratings of the UCS
(visual sexual stimuli).
Skin Conductance Responses
ANOVA showed a main effect of CS type in the FIR

(F1,33 ¼ 4.58; P < .05) and TIR (F1,33 ¼ 9.70; P < .01) and a
trend in the SIR (F1,33 ¼ 3.47; P ¼ .072) showing increased
SCRs to the CSþ and to the UCS, respectively, compared with
the CS�. No main effects of group occurred in the FIR
(P ¼ .610), SIR (P ¼ .698), or TIR (P ¼ .698). In addition, no
CS type � group interaction effects were found in FIR
(P ¼ .271) and TIR (P ¼ .260) after correction for multiple
comparisons (FIR, SIR, and TIR).
fMRI Analysis

Main Effect of Task (CSþ vs CS�)
When analyzing themain effect of conditioning (CSþ vs CS�),

whole-brain results showed increased responses to the CSþ in the
left (x/y/z¼�30/�94/�21; maximum z [zmax]¼ 5.16; corrected
P [Pcorr] <.001) and right (x/y/z ¼ 27/�88/�1; zmax ¼ 4.17;
Pcorr < .001) occipital cortices. In addition, ROI analyses showed
increased activation to the CSþ compared with the CS� in the
ventral striatum and occipital cortex and trends in the insula and
J Sex Med 2016;13:627e636
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Figure 1. Main effect of stimulus (CSþ vs CS�) in subjective ratings separately for the two groups. Error bars represent standard errors of
the mean. CS� ¼ conditioned stimulus - ; CSþ ¼ conditioned stimulus þ; CSB ¼ compulsive sexual behavior.
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OFC (Table 2), indicating successful conditioning of hemody-
namic responses across all participants.

Group Differences (CSþ vs CS�)
Regarding group differences, two-sample t-tests showed no

differences in whole-brain analyses but did show increased
hemodynamic responses in the CSB group compared with the
control group in the right amygdala (Pcorr ¼ .012) for CSþ vs
CS� (Table 2 and Figure 2A), whereas the control group did not
show significantly enhanced activations compared with the CSB
group (Pcorr > .05 for all comparisons).

UCS vs non-UCS
Regarding UCS vs non-UCS, group differences were explored

using two-sample t-tests. No differences between groups
Table 2. Localization and Statistics of Peak Voxels for Main Effect
(region-of-interest analysis)*

Group analysis Structure Side k

Main effect of stimulus Ventral striatum L 19
Occipital cortex L 241
Occipital cortex R 230
OFC R 49
Insula L 134

CSB vs control group Amygdala R 39
Control vs CSB group†

CSB ¼ compulsive sexual behavior; k ¼ cluster size; L ¼ left hemisphere; OFC
*The threshold was P < .05 (corrected for familywise error; small volume c
Neurological Institute space.
†No significant activations.
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occurred for this contrast, indicating that the differences in CRs
were not based on differences in unconditioned responses.

Psychophysiologic Interaction
In addition to the appetitive conditioning results, we used PPI

to explore the connectivity among the ventral striatum,
amygdala, and vmPFC. PPI detects brain structures correlated
with a seed ROI in a task-dependent manner. The ventral
striatum and amygdala were used as seed regions because these
areas are associated with emotion regulation and regulation of
impulsivity. Whole-brain results showed decreased coupling
between the ventral striatum as the seed region and the left
prefrontal (x/y/z ¼ �24/47/28; z ¼ 4.33; Puncorr < .0001; x/y/
z ¼ �12/32/�8; z ¼ 4.13; Puncorr < .0001), right lateral, and
prefrontal (x/y/z ¼ 57/�28/40; z ¼ 4.33; Puncorr < .0001;
of Stimulus and Group Differences for the contrast CSþ vs CS-

x y z Maximum z Corrected P value

�15 �1 �2 2.80 .045
�24 �88 �8 4.28 <.001
24 �88 �5 4.00 .002
12 41 �2 2.70 .081

�36 17 17 3.05 .073
15 �10 �14 3.29 .012

¼ orbitofrontal cortex; R ¼ right hemisphere.
orrection according to SPM8). All coordinates are given in Montreal



Figure 2. Panel A depicts increased hemodynamic responses in subjects with compulsive sexual behavior compared with control subjects
for the contrast CSþ vs CS-. Panel B depicts decreased hemodynamic coupling processes between the ventral striatum and prefrontal
cortex in subjects with compulsive sexual behavior compared with control subjects. The color bar depicts t values for this contrast. Figure 2
is available in color online at www.jsm.jsexmed.org.
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x/y/z ¼ �12/32/�8; z ¼ 4.18; Puncorr < .0001) cortices in the
CSB vs control group. ROI analysis of the vmPFC showed
decreased connectivity between the ventral striatum and vmPFC
in subjects with CSB compared with controls (x/y/z ¼ 15/41/
�17; z ¼ 3.62; Pcorr < .05; Table 3 and Figure 2B). No group
differences in amygdala-prefrontal coupling were found.
DISCUSSION

Previous theories have postulated that appetitive conditioning
is an important mechanism for the development and mainte-
nance of approaching behavior and related psychiatric
disorders.16 Therefore, the aim of the present study was to
investigate the neural correlates of appetitive conditioning in
subjects with CSB compared with a control group and to
determine potential differences in connectivity of the ventral
striatum and amygdala with the vmPFC. Regarding the main
Table 3. Localization and Statistics of the Peak Voxels for Psychoph
Differences (region-of-interest analysis)*

Group analysis Coupling Side k x

CSB vs control group†
Control vs CSB group vmPFC R 137 1

CSB ¼ compulsive sexual behavior; k ¼ cluster size; R ¼ right hemisphere; vm
*The threshold was P < .05 (corrected for familywise error; small volume c
Neurological Institute space.
†No significant activations.
effect of appetitive conditioning, we found increased SCRs,
subjective ratings, and blood oxygen level-dependent responses
in the ventral striatum, OFC, occipital cortex, and insula to the
CSþ vs CS�, indicating overall successful appetitive condi-
tioning across all subjects.

Regarding group differences, subjects with CSB displayed
increased hemodynamic responses for CSþ vs CS� in the amyg-
dala compared with controls. This finding is in line with a recent
meta-analysis that showed that amygdala activation is often
increased in patients with addiction disorders compared with
controls37 and for other psychiatric disorders, which are discussed
in context of CSB. Remarkably, the meta-analysis also provided
evidence that the amygdala might play a significant role for craving
in patients.37 In addition, the amygdala constitutes an important
marker for stabilization of the learning signal.16 Thus, the observed
increased amygdala reactivity could be interpreted as a correlate of a
facilitated acquisition process, which renders formerly neutral
ysiologic Interaction (seed region: ventral striatum) for Group

y z Maximum z Corrected P value

5 41 �17 3.62 .029

PFC ¼ ventromedial prefrontal cortex.
orrection according to SPM8). All coordinates are given in Montreal

J Sex Med 2016;13:627e636
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stimuli into salient cues (CSþ) to more easily provoke approach
behavior in subjects with CSB. In accord with this notion,
increased amygdala reactivity has been reported to be amaintaining
factor in many drug-related and nonedrug-related psychiatric
disorders.56 Therefore, one could hypothesize that increased
amygdala activation during appetitive conditioning might be
important for the development and maintenance of CSB.

Moreover, the present results allow speculation about different
functions of the amygdala in fear and in appetitive conditioning.
We assume that the different role of the amygdala in fear
conditioning and appetitive conditioning might be due to its
involvement in different CRs. For example, increased startle
amplitude is one of the most valid CRs during fear conditioning
and is mediated primarily by the amygdala. Hence, amygdala
activations are a robust finding during fear conditioning and
amygdala lesions lead to impairments of conditioned startle
amplitude in fear conditioning.57 In contrast, startle amplitudes
are decreased during appetitive conditioning, and other response
levels such as genital responses (which are not primarily
influenced by the amygdala) seem to be more appropriate
markers for sexual conditioning.58 In addition, different
amygdala nuclei are most likely involved in fear and appetitive
conditioning and thus could serve different subsystems for
appetitive and fear conditioning.16

Moreover, we found decreased coupling between the ventral
striatum and vmPFC in subjects with CSB compared with the
control group. Altered coupling between the ventral striatum and
prefrontal areas has been reported in the context of emotion
downregulation, substance disorders, and control of impulsivity
and has been observed in pathologic gambling.43,59e61 Several
studies have suggested that dysfunctional coupling processes
might be a correlate of impairment of inhibition and motor
control.41,43 Therefore, the decreased coupling could reflect
dysfunctional control mechanisms, which nicely fits with
previous results showing altered connectivity in patients with
impairments in inhibition control.62

We observed significant differentiations between the CSþ and
the CS� in subjective ratings and in SCRs in the two groups,
indicating successful conditioning, but no group differences in
these two response systems. This finding is in accord with other
studies reporting subjective ratings as a reliable marker for condi-
tioning effects (ie, significant differences between CSþ and CS�),
but not for detecting group differences in conditioning. For
instance, no group differences were found in subjective ratings and
in SCRs during appetitive22e24 or aversive48,53,54,63e65

conditioning among various groups, whereas group differences
were observed in other response systems such as startle or blood
oxygen level-dependent responses.22e24,63 Notably, subjective
ratings not only seem to be an insufficient marker of group
differences but also seem to be relatively uninfluenced by a broad
range of other experimental manipulations, such as extinction or
overshadowing.66,67We observed the same result pattern in SCRs,
with significant differentiation between the CSþ and the CS� but
J Sex Med 2016;13:627e636
no group-dependent effects. These findings support the idea that
subjective ratings and SCRs might be regarded as stable indices for
conditioning, whereas other measurements seem better for
reflecting individual differences. One explanation could be that
subjective ratings and SCRs recruit more amygdala-independent
(eg, cortical or ACC) brain areas in contrast to response systems
such as conditioned startle amplitude, which is innervated
primarily by amygdala responses.68 For instance, it has been shown
that conditioned SCRs, but not conditioned startle responses, are
detectable in patients with amygdala lesions.69 Future studies
should explore the underlying mechanisms potentially responsible
for the dissociation of response systems in more detail and should
include startle amplitude as an important measurement for
assessing group differences.

In addition, it would be interesting to compare the neural
correlates of subjects with CSB with a control group showing
high SEM consummation levels but no further dysfunctional
behavior. This approach would help to gain a better
understanding of the general effects of increased SEM
consummation levels in shaping neural processes of SEM.
Limitations
Some limitations have to be taken into account. We did not

find differences in the ventral striatum between the two groups.
One explanation for this could be that ceiling effects could have
prevented potential group differences. Several studies have
reported that sexual cues can provoke increased dopaminergic
transmission more than other rewarding stimuli.1,58,70 Further, it
should be noted that the vmPFC is not a well-defined region and
might contain heterogeneous subdivisions involved in different
emotional functions. For instance, the vmPFC activation cluster
in other studies is more lateral and anterior to our result.43

Therefore, the present finding might reflect several processes
because the vmPFC is involved in many different functions such
as attention or reward processing.
Conclusion and Implications
In general, the observed increased amygdala activity and the

concurrently decreased ventral striatal-PFC coupling allows spec-
ulations about the etiology and treatment of CSB. Subjects with
CSB seemed more prone to establish associations between formally
neutral cues and sexually relevant environmental stimuli. Thus,
these subjects are more likely to encounter cues that elicit
approaching behavior. Whether this leads to CSB or is a result of
CSB must be answered by future research. In addition, impaired
regulation processes, which are reflected in the decreased ventral
striatal-prefrontal coupling, might further support the maintenance
of the problematic behavior. With respect to clinical implications,
we found significant differences in learning processes and decreased
connectivity between the ventral striatum and vmPFC. Facilitated
appetitive learning processes in combination with dysfunctional
emotion regulation could hamper successful treatment. In line with
this view, recent findings have postulated that altered ventral
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striatal-PFC coupling could significantly increase the odds of
relapse.71 This could indicate that treatments that focus on emotion
regulation alsomight be effective for CSB. Evidence supporting this
view has shown that cognitive behavioral therapy, which is based on
these learning and emotion regulation mechanisms, is an effective
treatment for many disorders.72 These findings contribute to a
better understanding of the underlying mechanisms of CSB and
suggest potential implications for its treatment.
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